The synthesis of ultrasmall UiO-66 nanoparticles (NPs) with an average size of 25 nm, determined by X-ray powder diffraction and electron microscopies analysis, is reported. The NPs were stabilized in water by dialyzing the NP from the DMF used for the synthesis. DLS measurements confirmed the presence of particles of 100 nm, which are spherical aggregates of smaller particles of 20–30 nm size. The NP have a BET surface area of 700 m2/g with an external surface area of 300 m2/g. UiO-66_N (UiO-66 nanoparticles) were loaded with acridine orange as fluorescent probe. UV-vis spectroscopy analysis revealed no acridine loss after 48 h of agitation in simulated body fluid. The biocompatibility of UiO-66_N was evaluated in human glioblastoma (GBM) cell line U251, the most malignant (IV grade of WHO classification) among brain tumors. In U251 cells, UiO-66_N are inert since they do not alter the cell cycle, the viability, migration properties, and the expression of kinases involved in cancer cell growth. The internalization process was evident after a few hours of incubation. After 24 h, UiO-66_N@Acr (UiO-66_N loaded with acridine orange) were detectable around the nuclei of the cells. These data suggest that small UiO-66 are biocompatible NP and could represent a potential carrier for drug delivery in glioblastoma therapies.

Probing Internalization Effects and Biocompatibility of Ultrasmall Zirconium Metal-Organic Frameworks UiO-66 NP in U251 Glioblastoma Cancer Cells

Arcuri, Cataldo
;
MONARCA, LORENZO;Ragonese, Francesco;Mecca, Carmen;Bruscoli, Stefano;Giovagnoli, Stefano;Donato, Rosario;Bereshchenko, Oxana;Fioretti, Bernard;Costantino, Ferdinando
2018

Abstract

The synthesis of ultrasmall UiO-66 nanoparticles (NPs) with an average size of 25 nm, determined by X-ray powder diffraction and electron microscopies analysis, is reported. The NPs were stabilized in water by dialyzing the NP from the DMF used for the synthesis. DLS measurements confirmed the presence of particles of 100 nm, which are spherical aggregates of smaller particles of 20–30 nm size. The NP have a BET surface area of 700 m2/g with an external surface area of 300 m2/g. UiO-66_N (UiO-66 nanoparticles) were loaded with acridine orange as fluorescent probe. UV-vis spectroscopy analysis revealed no acridine loss after 48 h of agitation in simulated body fluid. The biocompatibility of UiO-66_N was evaluated in human glioblastoma (GBM) cell line U251, the most malignant (IV grade of WHO classification) among brain tumors. In U251 cells, UiO-66_N are inert since they do not alter the cell cycle, the viability, migration properties, and the expression of kinases involved in cancer cell growth. The internalization process was evident after a few hours of incubation. After 24 h, UiO-66_N@Acr (UiO-66_N loaded with acridine orange) were detectable around the nuclei of the cells. These data suggest that small UiO-66 are biocompatible NP and could represent a potential carrier for drug delivery in glioblastoma therapies.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1438416
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact