This study investigated the behavior of two types of modified biochar (functional and iron composite biochars) as a catalyst regarding their surface chemistry and morphological properties and their effects on bio-product derived from pyrolysis of Cladophora glomerata (C. glomerata) macroalagae. Two catalytic pyrolysis experiments were conducted in 25 mL slow pyrolysis reactor in the presence of biochar-based catalysts at the temperature of 500 C. For functional biochar, no clear effect on biogas production was observed, whereas iron composite biochar increased the hydrogen content by 7.99 mml/g algae. Iron composite biochar with a 3D network structure demonstrated remarkable catalytic behaviors (especially toward hydrogen production) due to its wonderful surface area, high dispersion of iron particles and particular structures and compositions. The biochar derived marine biomass and treatment process developed here could provide a promising path for the low-cost, efficient, renewable and environmental friendly catalysts.

Catalytic Effect of Functional and Fe Composite Biochars on Biofuel and Biochemical Derived from the Pyrolysis of Green Marine Biomass

Omid Norouzi
Formal Analysis
;
Francesco Di Maria
Supervision
2018

Abstract

This study investigated the behavior of two types of modified biochar (functional and iron composite biochars) as a catalyst regarding their surface chemistry and morphological properties and their effects on bio-product derived from pyrolysis of Cladophora glomerata (C. glomerata) macroalagae. Two catalytic pyrolysis experiments were conducted in 25 mL slow pyrolysis reactor in the presence of biochar-based catalysts at the temperature of 500 C. For functional biochar, no clear effect on biogas production was observed, whereas iron composite biochar increased the hydrogen content by 7.99 mml/g algae. Iron composite biochar with a 3D network structure demonstrated remarkable catalytic behaviors (especially toward hydrogen production) due to its wonderful surface area, high dispersion of iron particles and particular structures and compositions. The biochar derived marine biomass and treatment process developed here could provide a promising path for the low-cost, efficient, renewable and environmental friendly catalysts.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1439239
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact