In this work, the effect of 6 different fillers as a nanomodifier of phenolic matrix was evaluated in thermal stability and reaction to fire. The chosen nanoparticles were montmorillonite, silica, carbon black, and 3 carbides—boron, silicon, and zirconium carbides. The nanofillers were mechanically dispersed in the matrix, and the dispersion and distribution of the nanosized particles in the matrix was evaluated by transmission electron microscopy. The thermal stability of nanocomposites was investigated by thermogravimetric analysis both in nitrogen and in air while the thermal combustion properties were measured using a microscale combustion calorimeter. The experimental data highlighted the remarkable effects of nanoboron carbide on the thermal properties it can confer to the phenolic matrix. Rheological behavior of the blends was also investigated to evaluate the effect of the different fillers on the viscosity of the nanostructured matrices.

Nanostructured phenolic matrices: Effect of different nanofillers on the thermal degradation properties and reaction to fire of a resol

Rallini, M.;Natali, M.;Torre, L.
2017

Abstract

In this work, the effect of 6 different fillers as a nanomodifier of phenolic matrix was evaluated in thermal stability and reaction to fire. The chosen nanoparticles were montmorillonite, silica, carbon black, and 3 carbides—boron, silicon, and zirconium carbides. The nanofillers were mechanically dispersed in the matrix, and the dispersion and distribution of the nanosized particles in the matrix was evaluated by transmission electron microscopy. The thermal stability of nanocomposites was investigated by thermogravimetric analysis both in nitrogen and in air while the thermal combustion properties were measured using a microscale combustion calorimeter. The experimental data highlighted the remarkable effects of nanoboron carbide on the thermal properties it can confer to the phenolic matrix. Rheological behavior of the blends was also investigated to evaluate the effect of the different fillers on the viscosity of the nanostructured matrices.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1442075
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
social impact