This study reports the complex textural and chemical features of K-feldspar megacrysts (up to 5 cm long) hosted in trachydacitic lava flows, lava domes, and coulées from Mt. Amiata volcano (Tuscan Magmatic Province, Central Italy). Backscattering and cathodoluminescence imaging, coupled with core to rim major and trace elements patterns, reveal complex zoning, and resorption surfaces associated with sharp chemical variations (e.g., Sr and Ba). These zoning patterns originated by disequilibrium and re-equilibration events, related to the repeated influx of mafic magmas or convective motions in the trachydacitic magma reservoir. Multiple mafic magma refilling occurences are also supported by the field record of abundant microgranular magmatic enclaves in the studied products. Our results highlight that the abnormal dimension of the studied K-feldspars originates by the interplay between petrological and kinetic processes involving: (i) extensive dissolution; (ii) heterogeneous nucleation; (iii) alternation of spasmodic growth events in disequilibrium and near-equilibrium crystallization. The repeated influx of hotter magmas and reheating can determine the thermal condition to the growth of few, large K-feldspar megacrysts. Also, the strong textural and chemical similarities observed in the K-feldspar megacrysts from Mt. Amiata volcanic rocks and Mt. Capanne monzogranite (Elba Island, Central Italy) support the hypothesis of a phenocrystic origin of intrusive K-feldspar megacrysts.

Deciphering textural and chemical zoning of K-feldspar megacrysts from Mt. Amiata Volcano (Southern Tuscany, Italy): Insights into the petrogenesis and abnormal crystal growth

Petrelli, Maurizio;
2019

Abstract

This study reports the complex textural and chemical features of K-feldspar megacrysts (up to 5 cm long) hosted in trachydacitic lava flows, lava domes, and coulées from Mt. Amiata volcano (Tuscan Magmatic Province, Central Italy). Backscattering and cathodoluminescence imaging, coupled with core to rim major and trace elements patterns, reveal complex zoning, and resorption surfaces associated with sharp chemical variations (e.g., Sr and Ba). These zoning patterns originated by disequilibrium and re-equilibration events, related to the repeated influx of mafic magmas or convective motions in the trachydacitic magma reservoir. Multiple mafic magma refilling occurences are also supported by the field record of abundant microgranular magmatic enclaves in the studied products. Our results highlight that the abnormal dimension of the studied K-feldspars originates by the interplay between petrological and kinetic processes involving: (i) extensive dissolution; (ii) heterogeneous nucleation; (iii) alternation of spasmodic growth events in disequilibrium and near-equilibrium crystallization. The repeated influx of hotter magmas and reheating can determine the thermal condition to the growth of few, large K-feldspar megacrysts. Also, the strong textural and chemical similarities observed in the K-feldspar megacrysts from Mt. Amiata volcanic rocks and Mt. Capanne monzogranite (Elba Island, Central Italy) support the hypothesis of a phenocrystic origin of intrusive K-feldspar megacrysts.
2019
File in questo prodotto:
File Dimensione Formato  
LaFelice_Litos_post_print.pdf

accesso aperto

Tipologia di allegato: Post-print
Licenza: Creative commons
Dimensione 8.79 MB
Formato Adobe PDF
8.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1442292
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact