Spontaneous change of adhesion of solidifying liquid on surfaces is of significant importance in materials technology where it finds applications such as anti-icing components operating in extreme environments like those of seals. In this work, nitrile butadiene rubber (NBR) composites reinforced with graphene, carbon nanotubes, and a mix of them after immersion in several fluids, experienced both a swelling and a reduction of the cross-link density that reduces ice adhesion, being this effect more evident for graphene containing samples. These results have been rationalized via a first principles atomistic modellization of interfaces formed by ice water of increasing thickness and graphene and scaling laws from fracture mechanics, revealing a clear synergy between swelling and nanocarbon phase in the icephobic nature of the composite, dictated by a competition between elastic modulus and adsorption energy. These findings could find an upscale in component validation readily applied to different areas where de-icing demands handling of large amount of environmental harmful agents.
Synergistic icephobic behaviour of swollen nitrile butadiene rubber graphene and/or carbon nanotube composites
valentini l.
Writing – Original Draft Preparation
;bittolo bon s.Investigation
;giorgi g.Writing – Original Draft Preparation
2019
Abstract
Spontaneous change of adhesion of solidifying liquid on surfaces is of significant importance in materials technology where it finds applications such as anti-icing components operating in extreme environments like those of seals. In this work, nitrile butadiene rubber (NBR) composites reinforced with graphene, carbon nanotubes, and a mix of them after immersion in several fluids, experienced both a swelling and a reduction of the cross-link density that reduces ice adhesion, being this effect more evident for graphene containing samples. These results have been rationalized via a first principles atomistic modellization of interfaces formed by ice water of increasing thickness and graphene and scaling laws from fracture mechanics, revealing a clear synergy between swelling and nanocarbon phase in the icephobic nature of the composite, dictated by a competition between elastic modulus and adsorption energy. These findings could find an upscale in component validation readily applied to different areas where de-icing demands handling of large amount of environmental harmful agents.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.