Solution-processable perovskite solar cells have recently achieved certified power conversion efficiencies of over 20%, challenging the long-standing perception that high efficiencies must come at high costs. One major bottleneck for increasing the efficiency even further is the lack of suitable hole-transporting materials, which extract positive charges from the active light absorber and transmit them to the electrode. In this work, we present a molecularly engineered hole-transport material with a simple dissymmetric fluorene-dithiophene (FDT) core substituted by (N, N-di-p-methoxyphenylamine donor groups, which can be easily modified, providing the blueprint for a family of potentially low-cost hole-transport materials. We use FDT on state-of-the-art devices and achieve power conversion efficiencies of 20.2% which compare favourably with control devices with 2,2',7,7' - tetrakis(N, N-di-p-methoxyphenylamine)-9,9' -spirobifluorene (spiro-OMeTAD). Thus, this new hole transporter has the potential to replace spiro-OMeTAD.

A molecularly engineered hole-transporting material for efficient perovskite solar cells

Mosconi, Edoardo;De Angelis, Filippo;
2016

Abstract

Solution-processable perovskite solar cells have recently achieved certified power conversion efficiencies of over 20%, challenging the long-standing perception that high efficiencies must come at high costs. One major bottleneck for increasing the efficiency even further is the lack of suitable hole-transporting materials, which extract positive charges from the active light absorber and transmit them to the electrode. In this work, we present a molecularly engineered hole-transport material with a simple dissymmetric fluorene-dithiophene (FDT) core substituted by (N, N-di-p-methoxyphenylamine donor groups, which can be easily modified, providing the blueprint for a family of potentially low-cost hole-transport materials. We use FDT on state-of-the-art devices and achieve power conversion efficiencies of 20.2% which compare favourably with control devices with 2,2',7,7' - tetrakis(N, N-di-p-methoxyphenylamine)-9,9' -spirobifluorene (spiro-OMeTAD). Thus, this new hole transporter has the potential to replace spiro-OMeTAD.
2016
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1442704
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 778
  • ???jsp.display-item.citation.isi??? 800
social impact