The performance of dye-sensitized solar cells is tightly linked to the relative energy level alignment of its constituents. In this paper the electronic properties of a model of dye-sensitized solar cell are studied by accurate first-principle calculations taking into account many-body effects beyond density-functional theory. The cell model includes one layer of co-adsorbed solvent (water or acetonitrile) molecules. Solvent molecules induce an upwards energy shift in the TiO2 bands; such a shift is larger in the case of acetonitrile. The accurate determination of the energy levels allows the theoretical estimation of the maximum attainable open circuit voltage (V-oc).
Alignment of energy levels in dye/semiconductor interfaces by GW calculations: Effects due to coadsorption of solvent molecules
Mosconi, Edoardo;De Angelis, Filippo;
2014
Abstract
The performance of dye-sensitized solar cells is tightly linked to the relative energy level alignment of its constituents. In this paper the electronic properties of a model of dye-sensitized solar cell are studied by accurate first-principle calculations taking into account many-body effects beyond density-functional theory. The cell model includes one layer of co-adsorbed solvent (water or acetonitrile) molecules. Solvent molecules induce an upwards energy shift in the TiO2 bands; such a shift is larger in the case of acetonitrile. The accurate determination of the energy levels allows the theoretical estimation of the maximum attainable open circuit voltage (V-oc).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.