Hybrid halide perovskites represent one of the most promising solutions toward the fabrication of all solid nanostructured solar cells, with improved efficiency and long-term stability. This article aims at investigating the structural properties of iodide/ chloride mixed-halide perovskites and correlating them with their photovoltaic performances. We found out that, independent of the components ratio in the precursor solution, Cl incorporation in an iodide-based structure, is possible only at relatively low concentration levels (below 3-4%). However, even if the material band gap remains substantially unchanged, the Cl doping dramatically improves the charge transport within the perovskite layer, explaining the outstanding performances of meso-superstructured solar cells based on this material.
MAPbI3-xClx mixed halide perovskite for hybrid solar cells: The role of chloride as dopant on the transport and structural properties
Mosconi, Edoardo;De Angelis, Filippo
;
2013
Abstract
Hybrid halide perovskites represent one of the most promising solutions toward the fabrication of all solid nanostructured solar cells, with improved efficiency and long-term stability. This article aims at investigating the structural properties of iodide/ chloride mixed-halide perovskites and correlating them with their photovoltaic performances. We found out that, independent of the components ratio in the precursor solution, Cl incorporation in an iodide-based structure, is possible only at relatively low concentration levels (below 3-4%). However, even if the material band gap remains substantially unchanged, the Cl doping dramatically improves the charge transport within the perovskite layer, explaining the outstanding performances of meso-superstructured solar cells based on this material.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.