We describe a new approach to attach organic dyes to graphene oxide (GO) sheets with high loading and minimal perturbation of the electronic and optical properties of the dye. The dye unit used (a pH-sensitive terthiophene) is grafted to GO using a new modular synthetic approach, passing through a C6-aminic linker which makes GO more soluble in different organic solvents and allows straightforward attachment at high yield not only of terthiophene but of many commercially available amino-reactive dyes. The covalent engraftment to GO does not perturb the absorption and emission properties of the dye, and in particular the pH sensing capability through amidic group reversible protonation. This approach can allow (i) high solubility of the GO intermediate in organic solvents, (ii) convenient coupling with commercial, stable amino-reactive dyes under mild conditions, (iii) easy control of the spacer length between the GO and oligothiophene dye and finally (iv) high (up to 5 wt%) dye functionalization loadings.
Graphene-organic hybrids as processable, tunable platforms for pH-dependent photoemission, obtained by a new modular approach
De Angelis, Filippo;
2012
Abstract
We describe a new approach to attach organic dyes to graphene oxide (GO) sheets with high loading and minimal perturbation of the electronic and optical properties of the dye. The dye unit used (a pH-sensitive terthiophene) is grafted to GO using a new modular synthetic approach, passing through a C6-aminic linker which makes GO more soluble in different organic solvents and allows straightforward attachment at high yield not only of terthiophene but of many commercially available amino-reactive dyes. The covalent engraftment to GO does not perturb the absorption and emission properties of the dye, and in particular the pH sensing capability through amidic group reversible protonation. This approach can allow (i) high solubility of the GO intermediate in organic solvents, (ii) convenient coupling with commercial, stable amino-reactive dyes under mild conditions, (iii) easy control of the spacer length between the GO and oligothiophene dye and finally (iv) high (up to 5 wt%) dye functionalization loadings.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.