We present a unified overview of our recent activity on the modeling of relevant intermolecular interactions occurring in dye-sensitized solar cells (DSCs). The DSC is an inherent complex system, whose efficiency is essentially determined by the interrelated phenomena occurring at the multiple molecular-semiconductor-electrolyte heterointerfaces. In this Perspective, we illustrate the basic methodology and selected applications of computational modeling of dye-dye and dye-coadsorbent intermolecular interactions taking place at the dye-sensitized interface. We show that the proposed methodology offers a realistic picture of aggregation phenomena among surface-adsorbed dyes and nicely describes semiconductor surfaces cosensitized by different dyes. The information acquired from this type of studies might constitute the basis for an integrated multiscale computational description of the device functioning, including all of the possible interdependencies among the device constituents, which may further boost the DSCs efficiency. We believe that this direction should be the target of future computational research in the DSC field.
Intermolecular Interactions in Dye-Sensitized Solar Cells: A Computational Modeling Perspective
De Angelis, Filippo
2013
Abstract
We present a unified overview of our recent activity on the modeling of relevant intermolecular interactions occurring in dye-sensitized solar cells (DSCs). The DSC is an inherent complex system, whose efficiency is essentially determined by the interrelated phenomena occurring at the multiple molecular-semiconductor-electrolyte heterointerfaces. In this Perspective, we illustrate the basic methodology and selected applications of computational modeling of dye-dye and dye-coadsorbent intermolecular interactions taking place at the dye-sensitized interface. We show that the proposed methodology offers a realistic picture of aggregation phenomena among surface-adsorbed dyes and nicely describes semiconductor surfaces cosensitized by different dyes. The information acquired from this type of studies might constitute the basis for an integrated multiscale computational description of the device functioning, including all of the possible interdependencies among the device constituents, which may further boost the DSCs efficiency. We believe that this direction should be the target of future computational research in the DSC field.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.