Besides the nerve endings, the soma of trigeminal neurons also respond to membrane depolarizations with the release of neurotransmitters and neuromodulators in the extracellular space within the ganglion, a process potentially important for the cross-communication between neighboring sensory neurons. In this study, we addressed the dependence of somatic release on Ca2+ influx in trigeminal neurons and the involvement of the different types of voltage-gated Ca2+ (Cav) channels in the process. Similar to the closely related dorsal root ganglion neurons, we found two kinetically distinct components of somatic release, a faster component stimulated by voltage but independent of the Ca2+ influx, and a slower component triggered by Ca2+ influx. The Ca2+ -dependent component was inhibited 80% by ω-conotoxin-MVIIC, an inhibitor of both N- and P/Q-type Cav channels, and 55% by the P/Q-type selective inhibitor ω-agatoxin-IVA. The selective L-type Ca2+ channel inhibitor nimodipine was instead without effect. These results suggest a major involvement of N- and P/Q-, but not L-type Cav channels in the somatic release of trigeminal neurons. Thus antinociceptive Cav channel antagonists acting on the N- and P/Q-type channels may exert their function by also modulating the somatic release and cross-communication between sensory neurons.
Ca2+ -dependent and Ca2+ -independent somatic release from trigeminal neurons
Sforna, Luigi;Franciolini, Fabio;Catacuzzeno, Luigi
2019
Abstract
Besides the nerve endings, the soma of trigeminal neurons also respond to membrane depolarizations with the release of neurotransmitters and neuromodulators in the extracellular space within the ganglion, a process potentially important for the cross-communication between neighboring sensory neurons. In this study, we addressed the dependence of somatic release on Ca2+ influx in trigeminal neurons and the involvement of the different types of voltage-gated Ca2+ (Cav) channels in the process. Similar to the closely related dorsal root ganglion neurons, we found two kinetically distinct components of somatic release, a faster component stimulated by voltage but independent of the Ca2+ influx, and a slower component triggered by Ca2+ influx. The Ca2+ -dependent component was inhibited 80% by ω-conotoxin-MVIIC, an inhibitor of both N- and P/Q-type Cav channels, and 55% by the P/Q-type selective inhibitor ω-agatoxin-IVA. The selective L-type Ca2+ channel inhibitor nimodipine was instead without effect. These results suggest a major involvement of N- and P/Q-, but not L-type Cav channels in the somatic release of trigeminal neurons. Thus antinociceptive Cav channel antagonists acting on the N- and P/Q-type channels may exert their function by also modulating the somatic release and cross-communication between sensory neurons.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.