Active manipulation of spin waves is essential for the development of magnon-based technologies. Here, we demonstrate programmable spin-wave filtering by resetting the spin structure of pinned 90° Néel domain walls in a continuous CoFeB film with abrupt rotations of uniaxial magnetic anisotropy. Using micro-focused Brillouin light scattering and micromagnetic simulations, we show that broad 90° head-to-head or tail-to-tail magnetic domain walls are transparent to spin waves over a broad frequency range. In contrast, magnetic switching to a 90° head-to-tail configuration produces much narrower and strongly reflecting domain walls at the same pinning locations. Based on these results, we propose a magnetic spin-wave valve with two parallel domain walls. Switching the spin-wave valve from an open to a closed state changes the transmission of spin waves from nearly 100 to 0%. Active control over spin-wave transport through programmable domain walls could be utilized in magnonic logic devices or non-volatile memory elements.
Control of spin-wave transmission by a programmable domain wall
Madami, MarcoInvestigation
;Gubbiotti, GianlucaWriting – Original Draft Preparation
;
2018
Abstract
Active manipulation of spin waves is essential for the development of magnon-based technologies. Here, we demonstrate programmable spin-wave filtering by resetting the spin structure of pinned 90° Néel domain walls in a continuous CoFeB film with abrupt rotations of uniaxial magnetic anisotropy. Using micro-focused Brillouin light scattering and micromagnetic simulations, we show that broad 90° head-to-head or tail-to-tail magnetic domain walls are transparent to spin waves over a broad frequency range. In contrast, magnetic switching to a 90° head-to-tail configuration produces much narrower and strongly reflecting domain walls at the same pinning locations. Based on these results, we propose a magnetic spin-wave valve with two parallel domain walls. Switching the spin-wave valve from an open to a closed state changes the transmission of spin waves from nearly 100 to 0%. Active control over spin-wave transport through programmable domain walls could be utilized in magnonic logic devices or non-volatile memory elements.File | Dimensione | Formato | |
---|---|---|---|
Hamalainen Nat. Comm. 9 4853.pdf
accesso aperto
Descrizione: PDF-Editor
Tipologia di allegato:
PDF-editoriale
Licenza:
Creative commons
Dimensione
2.07 MB
Formato
Adobe PDF
|
2.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.