Incorporating nanomaterials in living systems could force the latter to produce "bionicomposites". We report a review of the first attempts with such bionicomposites, e.g. showing how the control of the eating and dormant states of microorganisms can provide nano-architectures with novel mechanical and functional properties, and how introducing nanomaterials in the diets of animals producing silks (spiders or silkworms) leads to intrinsically reinforced fibers with strengths higher than those of their natural counterparts, as well as those of synthetic polymer fibers or carbon fiber-reinforced polymeric composites.

Bionicomposites

L. Valentini
Writing – Review & Editing
;
2019

Abstract

Incorporating nanomaterials in living systems could force the latter to produce "bionicomposites". We report a review of the first attempts with such bionicomposites, e.g. showing how the control of the eating and dormant states of microorganisms can provide nano-architectures with novel mechanical and functional properties, and how introducing nanomaterials in the diets of animals producing silks (spiders or silkworms) leads to intrinsically reinforced fibers with strengths higher than those of their natural counterparts, as well as those of synthetic polymer fibers or carbon fiber-reinforced polymeric composites.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1447372
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact