We have measured the flux of cosmic muons in the Laboratori Nazionali del Gran Sasso at 3800 m w.e. to be (3.432 ± 0.003)⋅ 10 −4 m −2s −1 based on ten years of Borexino data acquired between May 2007 and May 2017. A seasonal modulation with a period of (366.3 ± 0.6) d and a relative amplitude of (1.36 ±0.04)% is observed. The phase is measured to be (181.7 ± 0.4) d, corresponding to a maximum at the 1 st of July. Using data inferred from global atmospheric models, we show the muon flux to be positively correlated with the atmospheric temperature and measure the effective temperature coefficient α T = 0.90 ± 0.02. The origin of cosmic muons from pion and kaon decays in the atmosphere allows to interpret the effective temperature coefficient as an indirect measurement of the atmospheric kaon-to-pion production ratio r K/π = 0.11 +0.11 −0.07 for primary energies above 18 TeV. We find evidence for a long-term modulation of the muon flux with a period of ~ 3000 d and a maximum in June 2012 that is not present in the atmospheric temperature data. A possible correlation between this modulation and the solar activity is investigated. The cosmogenic neutron production rate is found to show a seasonal modulation in phase with the cosmic muon flux but with an increased amplitude of (2.6 ± 0.4)%.

Modulations of the cosmic muon signal in ten years of Borexino data

Ortica, F.;Romani, A.;
2019

Abstract

We have measured the flux of cosmic muons in the Laboratori Nazionali del Gran Sasso at 3800 m w.e. to be (3.432 ± 0.003)⋅ 10 −4 m −2s −1 based on ten years of Borexino data acquired between May 2007 and May 2017. A seasonal modulation with a period of (366.3 ± 0.6) d and a relative amplitude of (1.36 ±0.04)% is observed. The phase is measured to be (181.7 ± 0.4) d, corresponding to a maximum at the 1 st of July. Using data inferred from global atmospheric models, we show the muon flux to be positively correlated with the atmospheric temperature and measure the effective temperature coefficient α T = 0.90 ± 0.02. The origin of cosmic muons from pion and kaon decays in the atmosphere allows to interpret the effective temperature coefficient as an indirect measurement of the atmospheric kaon-to-pion production ratio r K/π = 0.11 +0.11 −0.07 for primary energies above 18 TeV. We find evidence for a long-term modulation of the muon flux with a period of ~ 3000 d and a maximum in June 2012 that is not present in the atmospheric temperature data. A possible correlation between this modulation and the solar activity is investigated. The cosmogenic neutron production rate is found to show a seasonal modulation in phase with the cosmic muon flux but with an increased amplitude of (2.6 ± 0.4)%.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1447531
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 26
social impact