In this paper, a novel method for the evaluation of the surface fatigue strength of a stainless-steel component is proposed. The use of stainless steel is necessary indeed, whenever a component has to work in a particularly aggressive environment that may cause an oxidation of the component itself. One of the major problems that affect stainless-steel components is the possible wear of the antioxidant film that reduces the antioxidant properties of the component itself. One of the main causes that can lead to wear is related to the surface corrosion that occurs every time two evolving bodies are forced to work against each other. If the antioxidant film is affected by surface fatigue problems, such as pitting or spalling, the antioxidant capacities of this type of steel may be lost. In this context, it is, therefore, necessary to verify, at least, by calculation that no corrosion problems exist. The method proposed in this activity is a hybrid method, numerical-theoretical, which allows to estimate the surface fatigue strength in a very short time without having to resort to finite element models that often are so complex to be in contrast with industrial purposes

On the Evaluation of Surface Fatigue Strength of a Stainless-Steel Aeronautical Component

Cianetti, filippo
;
Palmieri, massimiliano;
2019

Abstract

In this paper, a novel method for the evaluation of the surface fatigue strength of a stainless-steel component is proposed. The use of stainless steel is necessary indeed, whenever a component has to work in a particularly aggressive environment that may cause an oxidation of the component itself. One of the major problems that affect stainless-steel components is the possible wear of the antioxidant film that reduces the antioxidant properties of the component itself. One of the main causes that can lead to wear is related to the surface corrosion that occurs every time two evolving bodies are forced to work against each other. If the antioxidant film is affected by surface fatigue problems, such as pitting or spalling, the antioxidant capacities of this type of steel may be lost. In this context, it is, therefore, necessary to verify, at least, by calculation that no corrosion problems exist. The method proposed in this activity is a hybrid method, numerical-theoretical, which allows to estimate the surface fatigue strength in a very short time without having to resort to finite element models that often are so complex to be in contrast with industrial purposes
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1449633
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 10
social impact