We study Riemann-Lebesgue integrability of a vector function relative to an arbitrary non-negative set function. We obtain some classical integral properties. Results regarding the continuity properties of the integral and relationships among Riemann-Lebesgue, Birkhoff simple and Gould integrabilities are also established.

Properties of the Riemann-Lebesgue integrability in the non-additive case

Domenico Candeloro
Membro del Collaboration Group
;
Anna Rita Sambucini
Membro del Collaboration Group
2020

Abstract

We study Riemann-Lebesgue integrability of a vector function relative to an arbitrary non-negative set function. We obtain some classical integral properties. Results regarding the continuity properties of the integral and relationships among Riemann-Lebesgue, Birkhoff simple and Gould integrabilities are also established.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1450283
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact