The experimental investigation of range and strength of the intermolecular interaction in some prototypical systems has been carried out with the molecular beam technique. The data analysis suggested the adoption of a phenomenological approach, useful to formulate the force fields in systems at increasing complexity and whose details required in several applications, including the description of transport phenomena, are difficult to extract from only standard theoretical methods. The phenomenological approach is here presented, reviewing the results obtained in the derivation of collision integrals relevant to the estimation of transport properties for plasmas of applied interest.
Transport cross sections from accurate intermolecular forces
Pirani, Fernando;
2019
Abstract
The experimental investigation of range and strength of the intermolecular interaction in some prototypical systems has been carried out with the molecular beam technique. The data analysis suggested the adoption of a phenomenological approach, useful to formulate the force fields in systems at increasing complexity and whose details required in several applications, including the description of transport phenomena, are difficult to extract from only standard theoretical methods. The phenomenological approach is here presented, reviewing the results obtained in the derivation of collision integrals relevant to the estimation of transport properties for plasmas of applied interest.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.