Context. To correctly model the abundances of interstellar complex organic molecules (iCOMs) in different environments, both formation and destruction routes should be appropriately accounted for. While several scenarios have been explored for the formation of iCOMs via grain and gas-phase processes, much less work has been devoted to understanding the relevant destruction pathways, with special reference to (dissociative) charge exchange or proton transfer reactions with abundant atomic and molecular ions such as He+, H3+ and HCO+. Aims. By using a combined experimental and theoretical methodology we provide new values for the rate coecients and branching ratios (BRs) of the reactions of He+ ions with two important iCOMs, namely dimethyl ether (DME) and methyl formate (MF). We also review the destruction routes of DME and MF by other two abundant ions, namely H3 + and HCO+. Methods. Based on our recent laboratory measurements of cross sections and BRs for the DME/MF+ He+ reactions over a wide collision energy, we extended our theoretical insights on the selectivity of the microscopic dynamics to calculate the rate coecients k(T) in the temperature range from 10 to 298 K. We implemented these new and revised kinetic data in a general model of cold and warm gas, simulating environments where DME and MF have been detected. Results. Due to stereodynamical eects present at low collision energies, the rate coecients, BRs and temperature dependences here proposed dier substantially from those reported in KIDA and UDfA, two of the most widely used astrochemical databases. These revised rates impact the predicted abundances of DME and MF, with variations up to 40% in cold gases and physical conditions similar to those present in prestellar cores. Conclusions. This work demonstrates that the accuracy of astrochemical models can be improved by a thorough characterisationof the destruction routes of iCOMs. The details of the chemical systems can, indeed,

Destruction of dimethyl ether and methyl formate by collisions with He+

Balucani, Nadia
;
Pirani, Fernando
2019

Abstract

Context. To correctly model the abundances of interstellar complex organic molecules (iCOMs) in different environments, both formation and destruction routes should be appropriately accounted for. While several scenarios have been explored for the formation of iCOMs via grain and gas-phase processes, much less work has been devoted to understanding the relevant destruction pathways, with special reference to (dissociative) charge exchange or proton transfer reactions with abundant atomic and molecular ions such as He+, H3+ and HCO+. Aims. By using a combined experimental and theoretical methodology we provide new values for the rate coecients and branching ratios (BRs) of the reactions of He+ ions with two important iCOMs, namely dimethyl ether (DME) and methyl formate (MF). We also review the destruction routes of DME and MF by other two abundant ions, namely H3 + and HCO+. Methods. Based on our recent laboratory measurements of cross sections and BRs for the DME/MF+ He+ reactions over a wide collision energy, we extended our theoretical insights on the selectivity of the microscopic dynamics to calculate the rate coecients k(T) in the temperature range from 10 to 298 K. We implemented these new and revised kinetic data in a general model of cold and warm gas, simulating environments where DME and MF have been detected. Results. Due to stereodynamical eects present at low collision energies, the rate coecients, BRs and temperature dependences here proposed dier substantially from those reported in KIDA and UDfA, two of the most widely used astrochemical databases. These revised rates impact the predicted abundances of DME and MF, with variations up to 40% in cold gases and physical conditions similar to those present in prestellar cores. Conclusions. This work demonstrates that the accuracy of astrochemical models can be improved by a thorough characterisationof the destruction routes of iCOMs. The details of the chemical systems can, indeed,
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1450692
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 20
social impact