The optimization of wind energy conversion efficiency has been recently boosting the technology improvement and the scientific comprehension of wind turbines. In this context, the yawing behavior of wind turbines has become a key topic: the yaw control can actually be exploited for optimization at the level of single wind turbine and of wind farm (for example, through active control of wakes). On these grounds, this work is devoted to the study of the yaw control optimization on a 2 MW wind turbine. The upgrade is estimated by analysing the difference between the measured post-upgrade power and a data driven model of the power according to the pre-upgrade behavior. Particular attention has therefore been devoted to the formulation of a reliable model for the pre-upgrade power of the wind turbine of interest, as a function of the operation variables of all the nearby wind turbines in the wind farm: the high correlation between the possible covariates of the model indicates that Principal Component Regression (PCR) is an adequate choice. Using this method, the obtained result for the selected test case is that the yaw control optimization provides a 1% of annual energy production improvement. This result indicates that wind turbine control optimization can non-negligibly improve the efficiency of wind turbine technology.

Wind turbine yaw control optimization and its impact on performance

Astolfi D.
;
Castellani F.;Natili F.
2019

Abstract

The optimization of wind energy conversion efficiency has been recently boosting the technology improvement and the scientific comprehension of wind turbines. In this context, the yawing behavior of wind turbines has become a key topic: the yaw control can actually be exploited for optimization at the level of single wind turbine and of wind farm (for example, through active control of wakes). On these grounds, this work is devoted to the study of the yaw control optimization on a 2 MW wind turbine. The upgrade is estimated by analysing the difference between the measured post-upgrade power and a data driven model of the power according to the pre-upgrade behavior. Particular attention has therefore been devoted to the formulation of a reliable model for the pre-upgrade power of the wind turbine of interest, as a function of the operation variables of all the nearby wind turbines in the wind farm: the high correlation between the possible covariates of the model indicates that Principal Component Regression (PCR) is an adequate choice. Using this method, the obtained result for the selected test case is that the yaw control optimization provides a 1% of annual energy production improvement. This result indicates that wind turbine control optimization can non-negligibly improve the efficiency of wind turbine technology.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1451168
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? ND
social impact