Green composites, with more than 78 wt.% of products obtained from linen linum usitatissimum, were developed in this research work. Epoxidized linseed oil (ELO) was used as biobased resin, a mix of nadic methyl anhydride (MNA) and maleinized linseed oil (MLO) were used as cross-linkers and finally, flax fabrics were used to obtain composite laminates by resin transfer molding (RTM). The flax fibers were modified using amino-silane, glycidyl-silane and maleic anhydride treatment in order to increase the compatibility between lignocellulosic fibers and the polymeric matrix. Mechanical and thermal properties were studied by flexural, tensile and impact test, as well as dynamic mechanical analyses (DMA) to study the viscoelastic behavior. Contrary to what could be expected, when fibers are previously treated in presence of MLO, a reduction of anchorage points is obtained causing a substantial increase in the ductile properties compared with composites without previous fiber treatment or without MLO

Maleinized linseed oil as epoxy resin hardener for composites with high bio content obtained from linen byproducts

Petrucci R.;Dominici F.;Torre L.
2019

Abstract

Green composites, with more than 78 wt.% of products obtained from linen linum usitatissimum, were developed in this research work. Epoxidized linseed oil (ELO) was used as biobased resin, a mix of nadic methyl anhydride (MNA) and maleinized linseed oil (MLO) were used as cross-linkers and finally, flax fabrics were used to obtain composite laminates by resin transfer molding (RTM). The flax fibers were modified using amino-silane, glycidyl-silane and maleic anhydride treatment in order to increase the compatibility between lignocellulosic fibers and the polymeric matrix. Mechanical and thermal properties were studied by flexural, tensile and impact test, as well as dynamic mechanical analyses (DMA) to study the viscoelastic behavior. Contrary to what could be expected, when fibers are previously treated in presence of MLO, a reduction of anchorage points is obtained causing a substantial increase in the ductile properties compared with composites without previous fiber treatment or without MLO
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1452515
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 26
social impact