Helium chemistry is notoriously very impervious. It is therefore certainly no surprise that, for example, beryllium and helium atoms, in their ground state, do not bind. Full configuration-interaction calculations show that the same turns out to be true, save for a long-range shallow attraction, for the Be+ + He system. However, quite astonishingly, when one electron is re-added to Be+ in an excited 2pπ or 3s orbital (Be 1P or 1S), a bound adduct with He is formed, at an interatomic separation as short as 1.5 Å. Understanding why this happens reveals an unsuspected chemical mechanism that stabilizes helium compounds at the molecular level.

Chemical Bond Mechanism for Helium Revealed by Electronic Excitation

Diego Cesario
Data Curation
;
Francesca Nunzi
Writing – Original Draft Preparation
;
Leonardo Belpassi
Supervision
;
Fernando Pirani
Supervision
;
Enrico Ronca
Validation
;
Francesco Tarantelli
Writing – Review & Editing
2019-01-01

Abstract

Helium chemistry is notoriously very impervious. It is therefore certainly no surprise that, for example, beryllium and helium atoms, in their ground state, do not bind. Full configuration-interaction calculations show that the same turns out to be true, save for a long-range shallow attraction, for the Be+ + He system. However, quite astonishingly, when one electron is re-added to Be+ in an excited 2pπ or 3s orbital (Be 1P or 1S), a bound adduct with He is formed, at an interatomic separation as short as 1.5 Å. Understanding why this happens reveals an unsuspected chemical mechanism that stabilizes helium compounds at the molecular level.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1452731
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact