Lake Trasimeno is a shallow, endorheic lake located in central Italy. It is the fourth Italian largest lake and is one of the largest endorheic basins in western Europe. Because of its shallow depth and the absence of natural outflows, the lake, in historical times, alternated from periods of floods to strong decreases of the water level during periods of prolonged drought. Lake water is characterised by a NaCl composition and relatively high salinity. The geochemical and isotopic monitoring of lake water from 2006 to 2018 shows the presence of well-defined seasonal trends, strictly correlated to precipitation regime and evaporation. These trends are clearly highlighted by the isotopic composition of lake water (delta O-18 and delta D) and by the variations of dissolved mobile species. In the long term, a progressive warming of lake water and a strong increase of total dissolved inorganic solids have been observed, indicating Lake Trasimeno as a paradigmatic example of how climate change can cause large variations of water quality and quantity. Furthermore, the rate of variation of lake water temperature is very close to the rate of variation of land-surface air temperature, LSAT, suggesting that shallow endorheic lakes can be used as a proxy for global warming measurements.
An endorheic lake in a changing climate: Geochemical investigations at Lake Trasimeno (Italy)
Frondini F.
;Dragoni W.;Cardellini C.;
2019
Abstract
Lake Trasimeno is a shallow, endorheic lake located in central Italy. It is the fourth Italian largest lake and is one of the largest endorheic basins in western Europe. Because of its shallow depth and the absence of natural outflows, the lake, in historical times, alternated from periods of floods to strong decreases of the water level during periods of prolonged drought. Lake water is characterised by a NaCl composition and relatively high salinity. The geochemical and isotopic monitoring of lake water from 2006 to 2018 shows the presence of well-defined seasonal trends, strictly correlated to precipitation regime and evaporation. These trends are clearly highlighted by the isotopic composition of lake water (delta O-18 and delta D) and by the variations of dissolved mobile species. In the long term, a progressive warming of lake water and a strong increase of total dissolved inorganic solids have been observed, indicating Lake Trasimeno as a paradigmatic example of how climate change can cause large variations of water quality and quantity. Furthermore, the rate of variation of lake water temperature is very close to the rate of variation of land-surface air temperature, LSAT, suggesting that shallow endorheic lakes can be used as a proxy for global warming measurements.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.