The aging program mediated by IGF1-R is responsible for a naturally occurring TrkA to p75(NTR) switch that leads to activation of the second messenger ceramide and increased production of the Alzheimer's disease amyloid beta-peptide. Biochemical and genetic approaches that target IGF1-R signaling, p75(NTR), or ceramide are able to block the above events. Here, we show that the transcription factors Egr-1 and Hipk2 are required elements for the TrkA to p75(NTR) switch downstream of IGF1-R signaling. Specifically, Egr-1 is required for the upregulation of p75(NTR), whereas Hipk2 is required for the downregulation of TrkA. In fact, gene silencing of Egr-1 abolished the ability of IGF1 to upregulate p75(NTR), whereas similar approaches directed against Hipk2 blocked the downregulation of TrkA. In addition, IGF1 treatment favored binding of Egr-1 and Hipk2 to the promoter of p75(NTR) and TrkA, respectively. Finally, the expression levels of both Egr-1 and Hipk2 are upregulated in an age-dependent fashion. Such an event is opposed by caloric restriction, a model of delayed aging, and favored by the p44 transgene in p44(+/+) animals, a model of accelerated aging.

Egr-1 and Hipk2 are required for the TrkA to p75(NTR) switch that occurs downstream of IGF1-R

Costantini C.;
2009

Abstract

The aging program mediated by IGF1-R is responsible for a naturally occurring TrkA to p75(NTR) switch that leads to activation of the second messenger ceramide and increased production of the Alzheimer's disease amyloid beta-peptide. Biochemical and genetic approaches that target IGF1-R signaling, p75(NTR), or ceramide are able to block the above events. Here, we show that the transcription factors Egr-1 and Hipk2 are required elements for the TrkA to p75(NTR) switch downstream of IGF1-R signaling. Specifically, Egr-1 is required for the upregulation of p75(NTR), whereas Hipk2 is required for the downregulation of TrkA. In fact, gene silencing of Egr-1 abolished the ability of IGF1 to upregulate p75(NTR), whereas similar approaches directed against Hipk2 blocked the downregulation of TrkA. In addition, IGF1 treatment favored binding of Egr-1 and Hipk2 to the promoter of p75(NTR) and TrkA, respectively. Finally, the expression levels of both Egr-1 and Hipk2 are upregulated in an age-dependent fashion. Such an event is opposed by caloric restriction, a model of delayed aging, and favored by the p44 transgene in p44(+/+) animals, a model of accelerated aging.
2009
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1453047
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact