Significant efforts are currently being made to move toxicity testing from animal experimentation to human relevant, mechanism-based approaches. In this context, the identification of molecular target(s) responsible for mechanisms of action is an essential step. Inspired by the recent concept of polypharmacology (the ability of drugs to interact with multiple targets) we argue that whole proteome virtual screening might become a breakthrough tool in toxicology reflecting the real complexity of chemical-biological interactions. Therefore, we investigated the value of performing ligand-protein binding prediction screening across the full proteome to identify new mechanisms of action for food chemicals. We applied the new approach to make a broader comparison between bisphenol A (BPA) (food-packaging chemical) and the endogenous estrogen, 17β-estradiol (EST). Applying a novel high-throughput ligand-protein binding prediction tool (BioGPS) by the Amazon Web Services (AWS) cloud (to speed-up the calculation), we investigated the value of performing in silico screening across the full proteome (all human and rodent x-ray protein structures available in the Protein Data Bank). The strong correlation between in silico predictions and available in vitro data demonstrates the high predictive power of the method used. The most striking results obtained was that BPA was predicted to bind to many more proteins than the ones already known, most of which were common to EST. Our findings provide a new and unprecedented insight on the complexity of chemical-protein interactions, highlighting the binding promiscuity of BPA and its broader similarity compared to the female sex hormone, EST.
Bisphenol A binding promiscuity: A virtual journey through the universe of proteins
Cruciani, Gabriele;
2020
Abstract
Significant efforts are currently being made to move toxicity testing from animal experimentation to human relevant, mechanism-based approaches. In this context, the identification of molecular target(s) responsible for mechanisms of action is an essential step. Inspired by the recent concept of polypharmacology (the ability of drugs to interact with multiple targets) we argue that whole proteome virtual screening might become a breakthrough tool in toxicology reflecting the real complexity of chemical-biological interactions. Therefore, we investigated the value of performing ligand-protein binding prediction screening across the full proteome to identify new mechanisms of action for food chemicals. We applied the new approach to make a broader comparison between bisphenol A (BPA) (food-packaging chemical) and the endogenous estrogen, 17β-estradiol (EST). Applying a novel high-throughput ligand-protein binding prediction tool (BioGPS) by the Amazon Web Services (AWS) cloud (to speed-up the calculation), we investigated the value of performing in silico screening across the full proteome (all human and rodent x-ray protein structures available in the Protein Data Bank). The strong correlation between in silico predictions and available in vitro data demonstrates the high predictive power of the method used. The most striking results obtained was that BPA was predicted to bind to many more proteins than the ones already known, most of which were common to EST. Our findings provide a new and unprecedented insight on the complexity of chemical-protein interactions, highlighting the binding promiscuity of BPA and its broader similarity compared to the female sex hormone, EST.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.