RNA polymerase II transcribes genes encoding proteins and a large number of small stable RNAs. While premRNA 3'-end formation requires a machinery ensuring tight coupling between cleavage and polyadenylation, small RNAs utilize polyadenylation-independent pathways. In yeast, specific factors required for snRNA and snoRNA 3'-end formation were characterized as components of the APT complex that is associated with the core complex of the cleavage/polyadenylation machinery (coreCPF). Other essential factors were identified as independent components: Nrd1p, Nab3p and Sen1p. Here we report that mutations in the conserved box D of snoRNAs and in the snoRNP-specific factor Nop1p interfere with transcription and 3'-end formation of box CID snoRNAs. We demonstrate that Nop1p is associated with box CID snoRNA genes and that it interacts with APT components. These data suggest a mechanism of quality control in which efficient transcription and 3'-end formation occur only when nascent snoRNAs are successfully assembled into functional particles.
Coupling between snoRNP assembly and 3′ processing controls box C/D snoRNA biosynthesis in yeast
Morlando M.;
2004
Abstract
RNA polymerase II transcribes genes encoding proteins and a large number of small stable RNAs. While premRNA 3'-end formation requires a machinery ensuring tight coupling between cleavage and polyadenylation, small RNAs utilize polyadenylation-independent pathways. In yeast, specific factors required for snRNA and snoRNA 3'-end formation were characterized as components of the APT complex that is associated with the core complex of the cleavage/polyadenylation machinery (coreCPF). Other essential factors were identified as independent components: Nrd1p, Nab3p and Sen1p. Here we report that mutations in the conserved box D of snoRNAs and in the snoRNP-specific factor Nop1p interfere with transcription and 3'-end formation of box CID snoRNAs. We demonstrate that Nop1p is associated with box CID snoRNA genes and that it interacts with APT components. These data suggest a mechanism of quality control in which efficient transcription and 3'-end formation occur only when nascent snoRNAs are successfully assembled into functional particles.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.