Plant biostimulants (PBS) increase crop productivity and induce beneficial processes in plants. Although PBS can stimulate plant tolerance to some abiotic stresses, their effect in improving crop resistance to herbicide injuries has barely been investigated. Therefore, a study on the effect of a biostimulant (Megafol) on maize (Zea mays L.) tolerance to a chloro-acetanilide herbicide (metolachlor) was carried out. We found that Megafol reduced the negative effects of metolachlor on maize. Indeed, biostimulated samples showed increases in germination, biomass production, Vigor index, and EC50 (effective concentration causing 50% reductions to roots and aerial biomass) with respect to the samples treated with metolachlor alone. Furthermore, plants treated with the herbicide in combination with Megafol showed lower levels of malondialdehyde (MDA). Antioxidant enzymes, namely, ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and catalase (CAT), were assayed in samples treated with metolachlor alone or in combination with Megafol, and higher enzymes activities were found in biostimulated plants. The results of this study open the perspective of using Megafol, as well as other suitable plant biostimulants, in improving the crop’s capacity to cope with injuries and unwanted effects that herbicide could cause to these species.
Application of a plant biostimulant to Improve maize (Zea mays) tolerance to metolachlor
Maria Luce Bartucca;Daniele Del Buono
2019
Abstract
Plant biostimulants (PBS) increase crop productivity and induce beneficial processes in plants. Although PBS can stimulate plant tolerance to some abiotic stresses, their effect in improving crop resistance to herbicide injuries has barely been investigated. Therefore, a study on the effect of a biostimulant (Megafol) on maize (Zea mays L.) tolerance to a chloro-acetanilide herbicide (metolachlor) was carried out. We found that Megafol reduced the negative effects of metolachlor on maize. Indeed, biostimulated samples showed increases in germination, biomass production, Vigor index, and EC50 (effective concentration causing 50% reductions to roots and aerial biomass) with respect to the samples treated with metolachlor alone. Furthermore, plants treated with the herbicide in combination with Megafol showed lower levels of malondialdehyde (MDA). Antioxidant enzymes, namely, ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and catalase (CAT), were assayed in samples treated with metolachlor alone or in combination with Megafol, and higher enzymes activities were found in biostimulated plants. The results of this study open the perspective of using Megafol, as well as other suitable plant biostimulants, in improving the crop’s capacity to cope with injuries and unwanted effects that herbicide could cause to these species.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.