The existence of L2-nonnegative solutions for nonlinear quadratic integral equations on a bounded closed interval is investigated. Two existence results for different classes of functions are shown. As a consequence an existence theorem for the Chandrasekhar integral quadratic equation, well-known in theory of radiative transfer, is obtained. The aim is achieved by means of a new fixed point theorem for multimaps in locally convex linear topological spaces.

Existence theorems for generalized nonlinear quadratic integral equations via a new fixed point result

Cardinali, Tiziana;Rubbioni, Paola
2020

Abstract

The existence of L2-nonnegative solutions for nonlinear quadratic integral equations on a bounded closed interval is investigated. Two existence results for different classes of functions are shown. As a consequence an existence theorem for the Chandrasekhar integral quadratic equation, well-known in theory of radiative transfer, is obtained. The aim is achieved by means of a new fixed point theorem for multimaps in locally convex linear topological spaces.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1457096
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact