Neuroprotection is conceived as one of the potential tool to prevent or slow neuronal death and hence a therapeutic hope to treat neurodegenerative diseases, like Parkinson’s and Alzheimer’s diseases. Increase of oxidative stress, mitochondrial dysfunction, excitotoxicity, inflammatory changes, iron accumulation, and protein aggregation have been identified as main causes of neuronal death and adopted as targets to test experimentally the putative neuroprotective effects of various classes of drugs. Among these agents, antiepileptic drugs (AEDs), both the old and the newer generations, have shown to exert protective effects in different experimental models. Their mechanism of action is mediated mainly by modulating the activity of sodium, calcium and potassium channels as well as the glutamatergic and GABAergic (gamma-aminobutyric acid) synapses. Neurological pathologies in which a neuroprotective action of AEDs has been demonstrated in specific experimental models include: cerebral ischemia, Parkinson’s disease, and Alzheimer’s disease. Although the whole of experimental data indicating that neuroprotection can be achieved is remarkable and encouraging, no firm data have been produced in humans so far and, at the present time, neuroprotection still remains a challenge for the future.

Neuroprotection as a potential therapeutic perspective in neurodegenerative diseases: Focus on antiepileptic drugs

Mazzocchetti P.;Calabresi P.;Costa C.
2016

Abstract

Neuroprotection is conceived as one of the potential tool to prevent or slow neuronal death and hence a therapeutic hope to treat neurodegenerative diseases, like Parkinson’s and Alzheimer’s diseases. Increase of oxidative stress, mitochondrial dysfunction, excitotoxicity, inflammatory changes, iron accumulation, and protein aggregation have been identified as main causes of neuronal death and adopted as targets to test experimentally the putative neuroprotective effects of various classes of drugs. Among these agents, antiepileptic drugs (AEDs), both the old and the newer generations, have shown to exert protective effects in different experimental models. Their mechanism of action is mediated mainly by modulating the activity of sodium, calcium and potassium channels as well as the glutamatergic and GABAergic (gamma-aminobutyric acid) synapses. Neurological pathologies in which a neuroprotective action of AEDs has been demonstrated in specific experimental models include: cerebral ischemia, Parkinson’s disease, and Alzheimer’s disease. Although the whole of experimental data indicating that neuroprotection can be achieved is remarkable and encouraging, no firm data have been produced in humans so far and, at the present time, neuroprotection still remains a challenge for the future.
2016
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1458510
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact