We show that converting the surfaces of lead halide perovskite to water-insoluble lead (II) oxysalt through reaction with sulfate or phosphate ions can effectively stabilize the perovskite surface and bulk material. These capping lead oxysalt thin layers enhance the water resistance of the perovskite films by forming strong chemical bonds. The wide-bandgap lead oxysalt layers also reduce the defect density on the perovskite surfaces by passivating undercoordinated surface lead centers, which are defect-nucleating sites. Formation of the lead oxysalt layer increases the carrier recombination lifetime and boosts the efficiency of the solar cells to 21.1%. Encapsulated devices stabilized by the lead oxysalt layers maintain 96.8% of their initial efficiency after operation at maximum power point under simulated air mass (AM) 1.5 G irradiation for 1200 hours at 65°C.
Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts
De Angelis F.;
2019
Abstract
We show that converting the surfaces of lead halide perovskite to water-insoluble lead (II) oxysalt through reaction with sulfate or phosphate ions can effectively stabilize the perovskite surface and bulk material. These capping lead oxysalt thin layers enhance the water resistance of the perovskite films by forming strong chemical bonds. The wide-bandgap lead oxysalt layers also reduce the defect density on the perovskite surfaces by passivating undercoordinated surface lead centers, which are defect-nucleating sites. Formation of the lead oxysalt layer increases the carrier recombination lifetime and boosts the efficiency of the solar cells to 21.1%. Encapsulated devices stabilized by the lead oxysalt layers maintain 96.8% of their initial efficiency after operation at maximum power point under simulated air mass (AM) 1.5 G irradiation for 1200 hours at 65°C.File | Dimensione | Formato | |
---|---|---|---|
2019_Stabilizinghalide_POSTPRINT.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia di allegato:
Post-print
Licenza:
Creative commons
Dimensione
2.03 MB
Formato
Adobe PDF
|
2.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.