A simple topological graph is k-quasiplanar (k≥2) if it contains no k pairwise crossing edges, and k-planar if no edge is crossed more than k times. In this paper, we explore the relationship between k-planarity and k-quasiplanarity to show that, for k≥2, every k-planar simple topological graph can be transformed into a (k+1)-quasiplanar simple topological graph.
Simple k-planar graphs are simple (k + 1)-quasiplanar
Didimo W.;Liotta G.;Montecchiani F.;
2020
Abstract
A simple topological graph is k-quasiplanar (k≥2) if it contains no k pairwise crossing edges, and k-planar if no edge is crossed more than k times. In this paper, we explore the relationship between k-planarity and k-quasiplanarity to show that, for k≥2, every k-planar simple topological graph can be transformed into a (k+1)-quasiplanar simple topological graph.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.