T cell gene signatures are used to evaluate T cell infiltration of non-lymphoid tissues and cancers in both experimental and clinical settings. However, some genes included in the available T cell signatures are not T cell-restricted. Herein, we propose a new human T cell signature that has been developed via a six-step procedure and comprises 15 T cell restricted genes. We demonstrate the new T cell signature, named signature-H, that differs from other gene signatures since it shows higher sensitivity and better predictivity in the evaluation of T cell infiltration in healthy tissues as well as 32 cancers. Further, results from signature-H are highly concordant with the immunohistochemistry methods currently used for assessing the prognosis of neuroblastoma, as demonstrated by the Kaplan–Meier curves of patients ranked by tumor T cell infiltration. Moreover, T cell infiltration levels calculated using signature-H correlate with the risk groups determined by the staging of the neuroblastoma. Finally, multiparametric analysis of tumor-infiltrating T cells based on signature-H let us favorably predict the response of melanoma to the anti-PD-1 antibody nivolumab. These findings suggest that signature-H evaluates T cell infiltration levels of tissues and may be used as a prognostic tool in the precision medicine perspective after appropriate clinical validation.

Identification of 15 T cell restricted genes evaluates t cell infiltration of human healthy tissues and cancers and shows prognostic and predictive potential

Cari L.;Petrillo M. G.;Migliorati G.;Nocentini G.
;
Riccardi C.
2019

Abstract

T cell gene signatures are used to evaluate T cell infiltration of non-lymphoid tissues and cancers in both experimental and clinical settings. However, some genes included in the available T cell signatures are not T cell-restricted. Herein, we propose a new human T cell signature that has been developed via a six-step procedure and comprises 15 T cell restricted genes. We demonstrate the new T cell signature, named signature-H, that differs from other gene signatures since it shows higher sensitivity and better predictivity in the evaluation of T cell infiltration in healthy tissues as well as 32 cancers. Further, results from signature-H are highly concordant with the immunohistochemistry methods currently used for assessing the prognosis of neuroblastoma, as demonstrated by the Kaplan–Meier curves of patients ranked by tumor T cell infiltration. Moreover, T cell infiltration levels calculated using signature-H correlate with the risk groups determined by the staging of the neuroblastoma. Finally, multiparametric analysis of tumor-infiltrating T cells based on signature-H let us favorably predict the response of melanoma to the anti-PD-1 antibody nivolumab. These findings suggest that signature-H evaluates T cell infiltration levels of tissues and may be used as a prognostic tool in the precision medicine perspective after appropriate clinical validation.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1462113
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact