Evidence of subtle effects in the dynamic reorganization of a protic solvent in its first- and farther-neighbor shells, in response to the sudden change in the solute's electronic distribution upon excitation, is unveiled by a multilevel computational approach. Through the combination of nonequilibrium molecular dynamics and quantum mechanical calculations, the experimental time evolution of the transient T1 absorption spectra of a heteroleptic Ru(II)-polypyridine complex in ethanol or dimethyl sulfoxide solution is reproduced and rationalized in terms of both fast and slow solvent re-equilibration processes, which are found responsible for the red shift and broadening experimentally observed only in the protic medium. Solvent orientational correlation functions and a time-dependent analysis of the solvation structure confirm that the initial, fast observed red shift can be traced back to the destruction-formation of hydrogen bond networks in the first-neighbor shell, whereas the subsequent shift, evident in the [20-500] ps range and accompanied by a large broadening of the signal, is connected to a collective reorientation of the second and farther solvation shells, which significantly changes the electrostatic embedding felt by the excited solute.

Short- and Long-Range Solvation Effects on the Transient UV-Vis Absorption Spectra of a Ru(II)-Polypyridine Complex Disentangled by Nonequilibrium Molecular Dynamics

Foggi P.;
2019

Abstract

Evidence of subtle effects in the dynamic reorganization of a protic solvent in its first- and farther-neighbor shells, in response to the sudden change in the solute's electronic distribution upon excitation, is unveiled by a multilevel computational approach. Through the combination of nonequilibrium molecular dynamics and quantum mechanical calculations, the experimental time evolution of the transient T1 absorption spectra of a heteroleptic Ru(II)-polypyridine complex in ethanol or dimethyl sulfoxide solution is reproduced and rationalized in terms of both fast and slow solvent re-equilibration processes, which are found responsible for the red shift and broadening experimentally observed only in the protic medium. Solvent orientational correlation functions and a time-dependent analysis of the solvation structure confirm that the initial, fast observed red shift can be traced back to the destruction-formation of hydrogen bond networks in the first-neighbor shell, whereas the subsequent shift, evident in the [20-500] ps range and accompanied by a large broadening of the signal, is connected to a collective reorientation of the second and farther solvation shells, which significantly changes the electrostatic embedding felt by the excited solute.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1462305
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact