Autophagy is a conserved “self-eating” recycling process which removes aggregated or misfolded proteins, or defective organelles, to maintain cellular hemostasis. In the autophagy-lysosome pathway (ALP), clearance of unwanted debris and materials occurs through the generation of the autophagosome, a complex of double-membrane bounded vesicles that form around cytosolic cargos and catabolize their contents by fusion to lysosomes. In tumors, autophagy has dichotomous functions via preventing tumor initiation but promoting tumor progression. The basic helix-loop-helix leucine zipper transcription factor EB (TFEB) activates the promoters of genes encoding for proteins, which participate in this cellular degradative system by regulating lysosomal biogenesis, lysosomal acidification, lysosomal exocytosis and autophagy. In humans, disturbances of ALP are related to various pathological conditions. Recently, TFEB dysregulation was found to have a crucial pathogenic role in different tumors by modulating tumor cell autophagy. Notably, in renal cell carcinomas, different TFEB gene fusions were reported to promote oncogenic features. In this review, we discuss the role of TFEB in human cancers with a special focus on potential diagnostic and therapeutic implications.

The role of TFEB in tumor cell autophagy: Diagnostic and therapeutic opportunities

Bianconi V.;Pirro M.;
2020

Abstract

Autophagy is a conserved “self-eating” recycling process which removes aggregated or misfolded proteins, or defective organelles, to maintain cellular hemostasis. In the autophagy-lysosome pathway (ALP), clearance of unwanted debris and materials occurs through the generation of the autophagosome, a complex of double-membrane bounded vesicles that form around cytosolic cargos and catabolize their contents by fusion to lysosomes. In tumors, autophagy has dichotomous functions via preventing tumor initiation but promoting tumor progression. The basic helix-loop-helix leucine zipper transcription factor EB (TFEB) activates the promoters of genes encoding for proteins, which participate in this cellular degradative system by regulating lysosomal biogenesis, lysosomal acidification, lysosomal exocytosis and autophagy. In humans, disturbances of ALP are related to various pathological conditions. Recently, TFEB dysregulation was found to have a crucial pathogenic role in different tumors by modulating tumor cell autophagy. Notably, in renal cell carcinomas, different TFEB gene fusions were reported to promote oncogenic features. In this review, we discuss the role of TFEB in human cancers with a special focus on potential diagnostic and therapeutic implications.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1462908
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact