Smart multiresponsive bionanocomposites with both humidity- and thermally activated shape-memory effects, based on blends of ethylene-vinyl acetate (EVA) and thermoplastic starch (TPS) are designed. Thermo- and humidity-mechanical cyclic experiments are performed in order to demonstrate the humidity- as well as thermally activated shape memory properties of the starch-based materials. In particular, the induced-crystallization is used in order to thermally activate the EVA shape memory response. The shape memory results of both blends and their nanocomposites reflect the excellent ability to both humidity- and thermally activated recover of the initial shape with values higher than 80 and 90%, respectively.
Multiresponsive Shape Memory Blends and Nanocomposites Based on Starch
Sessini V.;Kenny J. M.Supervision
;Peponi L.Writing – Original Draft Preparation
2016
Abstract
Smart multiresponsive bionanocomposites with both humidity- and thermally activated shape-memory effects, based on blends of ethylene-vinyl acetate (EVA) and thermoplastic starch (TPS) are designed. Thermo- and humidity-mechanical cyclic experiments are performed in order to demonstrate the humidity- as well as thermally activated shape memory properties of the starch-based materials. In particular, the induced-crystallization is used in order to thermally activate the EVA shape memory response. The shape memory results of both blends and their nanocomposites reflect the excellent ability to both humidity- and thermally activated recover of the initial shape with values higher than 80 and 90%, respectively.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.