The paper deals with joint use of non-invasive monitoring technologies and civil engineering analysis methods aimed at providing multi-sensing information about the structural health of historical and cultural assets. Specifically, linear variable displacement transducers (LVDT) and ground penetrating radar (GPR) are considered for monitoring a significant crack affecting the Consoli Palace in Gubbio, Italy, precisely one of the walls of the cross-hall leading to the Loggia. In this frame, LVDT is adopted to control horizontal amplitude variations of the crack, while GPR is applied to investigate the wall interior and to detect the occurrence of inner issues related to the visible appearance of the crack on the wall surface. The effectiveness of GPR surveys is improved by means of a microwave tomography-based data processing strategy. The main result is that there is a consistency between the monitoring outputs of LVDT, which allowed us to display the crack widening/contraction due to the seasonal temperature variations, and the fact that no significant changes of the geometry of the inner areas of the walls were observed by the GPR.
On the Combined Use of Ground Penetrating Radar and Crack Meter Sensors for Structural Monitoring: Application to the Historical Consoli Palace in Gubbio, Italy
Cavalagli N.;Ubertini F.;
2020
Abstract
The paper deals with joint use of non-invasive monitoring technologies and civil engineering analysis methods aimed at providing multi-sensing information about the structural health of historical and cultural assets. Specifically, linear variable displacement transducers (LVDT) and ground penetrating radar (GPR) are considered for monitoring a significant crack affecting the Consoli Palace in Gubbio, Italy, precisely one of the walls of the cross-hall leading to the Loggia. In this frame, LVDT is adopted to control horizontal amplitude variations of the crack, while GPR is applied to investigate the wall interior and to detect the occurrence of inner issues related to the visible appearance of the crack on the wall surface. The effectiveness of GPR surveys is improved by means of a microwave tomography-based data processing strategy. The main result is that there is a consistency between the monitoring outputs of LVDT, which allowed us to display the crack widening/contraction due to the seasonal temperature variations, and the fact that no significant changes of the geometry of the inner areas of the walls were observed by the GPR.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.