In yeast engineering, metabolic burden is often linked to the reprogramming of resources from regular cellular activities to guarantee recombinant protein(s) production. Therefore, growth parameters can be significantly influenced. Two recombinant strains, previously developed by the multiple δ-integration of a glucoamylase in the industrial Saccharomyces cerevisiae 27P, did not display any detectable metabolic burden. In this study, a Fourier Transform InfraRed Spectroscopy (FTIR)-based assay was employed to investigate the effect of δ-integration on yeast strains’ tolerance to the increasing ethanol levels typical of the starch-to-ethanol industry. FTIR fingerprint, indeed, offers a holistic view of the metabolome and is a well-established method to assess the stress response of microorganisms. Cell viability and metabolomic fingerprints have been considered as parameters to detecting any physiological and/or metabolomic perturbations. Quite surprisingly, the three strains did not show any difference in cell viability but metabolomic profiles were significantly altered and different when the strains were incubated both with and without ethanol. A LC/MS untargeted workflow was applied to assess the metabolites and pathways mostly involved in these strain-specific ethanol responses, further confirming the FTIR fingerprinting of the parental and recombinant strains. These results indicated that the multiple δ-integration prompted huge metabolomic changes in response to short-term ethanol exposure, calling for deeper metabolomic and genomic insights to understand how and, to what extent, genetic engineering could affect the yeast metabolome.

Delta-integration of single gene shapes the whole metabolomic short-term response to ethanol of recombinant Saccharomyces cerevisiae strains

Laura Corte;Luca Roscini;Debora Casagrande Pierantoni;Roberto Maria Pellegrino;Carla Emiliani;Gianluigi Cardinali
2020

Abstract

In yeast engineering, metabolic burden is often linked to the reprogramming of resources from regular cellular activities to guarantee recombinant protein(s) production. Therefore, growth parameters can be significantly influenced. Two recombinant strains, previously developed by the multiple δ-integration of a glucoamylase in the industrial Saccharomyces cerevisiae 27P, did not display any detectable metabolic burden. In this study, a Fourier Transform InfraRed Spectroscopy (FTIR)-based assay was employed to investigate the effect of δ-integration on yeast strains’ tolerance to the increasing ethanol levels typical of the starch-to-ethanol industry. FTIR fingerprint, indeed, offers a holistic view of the metabolome and is a well-established method to assess the stress response of microorganisms. Cell viability and metabolomic fingerprints have been considered as parameters to detecting any physiological and/or metabolomic perturbations. Quite surprisingly, the three strains did not show any difference in cell viability but metabolomic profiles were significantly altered and different when the strains were incubated both with and without ethanol. A LC/MS untargeted workflow was applied to assess the metabolites and pathways mostly involved in these strain-specific ethanol responses, further confirming the FTIR fingerprinting of the parental and recombinant strains. These results indicated that the multiple δ-integration prompted huge metabolomic changes in response to short-term ethanol exposure, calling for deeper metabolomic and genomic insights to understand how and, to what extent, genetic engineering could affect the yeast metabolome.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1472460
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact