This study shows that regenerated silk (RS), a natural biodegradable and biocompatible polymer, can behave as a self-adhesive thermoplastic material with multifunctional properties. In particular, Ca ions-plasticized RS hybrids with gold nanorods have been produced. It has been found that at mild conditions of temperature and pressure, RS hybrids undergo to the loss of the β-sheet content and forms a tough self-adhesive material on poly(3-hydroxybutyrateco- 3-hydroxyvalerate) (PHBV) substrate. The structure-dependent piezoelectricity of such RS adhesives on PHBV films was investigated and it was demonstrated that this forms a RS/PHBV piezoelectric sensor that can be used for the monitoring of force. The constitutive parameters (i.e., permittivity and loss tangent) of both PHBV and RS/PHBV were measured in view of their use as dielectric substrates in microwave circuit design. Being fully made of biodegradable and biocompatible materials, this self-adhesive material can be used in tissue engineering for different applications.

Self-adhesive plasticised regenerated silk on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) for bio-piezoelectric force sensor and microwave circuit design

Silvia Bittolo Bon;Luca Valentini;Paola Fabbri;Valentina Palazzi;Paolo Mezzanotte;Luca Roselli
2020

Abstract

This study shows that regenerated silk (RS), a natural biodegradable and biocompatible polymer, can behave as a self-adhesive thermoplastic material with multifunctional properties. In particular, Ca ions-plasticized RS hybrids with gold nanorods have been produced. It has been found that at mild conditions of temperature and pressure, RS hybrids undergo to the loss of the β-sheet content and forms a tough self-adhesive material on poly(3-hydroxybutyrateco- 3-hydroxyvalerate) (PHBV) substrate. The structure-dependent piezoelectricity of such RS adhesives on PHBV films was investigated and it was demonstrated that this forms a RS/PHBV piezoelectric sensor that can be used for the monitoring of force. The constitutive parameters (i.e., permittivity and loss tangent) of both PHBV and RS/PHBV were measured in view of their use as dielectric substrates in microwave circuit design. Being fully made of biodegradable and biocompatible materials, this self-adhesive material can be used in tissue engineering for different applications.
2020
File in questo prodotto:
File Dimensione Formato  
161.pdf

accesso aperto

Tipologia di allegato: PDF-editoriale
Licenza: Dominio pubblico
Dimensione 4.7 MB
Formato Adobe PDF
4.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1473952
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact