The out-of-plane mechanism (rocking) of walls often causes fatalities and collapses of historic buildings during earthquakes. This paper addresses the problem of assessing the seismic resistance of walls subjected to out-of-plane bending, before and after reinforcement. A new retroftting method, consisting in the use of high-strength steel cables fully embedded in the mortar bed joints was studied. An experimental investigation using fullscale brickwork specimens was therefore conducted in an attempt to assess the walls’ structural response when these are subject to out-of-plane loads. Test results demonstrated that it is possible to increase the out-of-plane capacity with the proposed method. A simplifed macro-element procedure is also presented along with recommendations for the calculation of the walls’ capacity before and after the application of the steel cable reinforcement. Predictions of the magnitude of horizontal force required to cause out-of-plane failure using the proposed procedure and quasi-static analysis procedures are compared with the results of laboratory experiments.
Out‑of‑plane reinforcement of masonry walls using joint‑embedded steel cables
Marco Corradi
Methodology
;Emanuela SperanziniInvestigation
;
2020
Abstract
The out-of-plane mechanism (rocking) of walls often causes fatalities and collapses of historic buildings during earthquakes. This paper addresses the problem of assessing the seismic resistance of walls subjected to out-of-plane bending, before and after reinforcement. A new retroftting method, consisting in the use of high-strength steel cables fully embedded in the mortar bed joints was studied. An experimental investigation using fullscale brickwork specimens was therefore conducted in an attempt to assess the walls’ structural response when these are subject to out-of-plane loads. Test results demonstrated that it is possible to increase the out-of-plane capacity with the proposed method. A simplifed macro-element procedure is also presented along with recommendations for the calculation of the walls’ capacity before and after the application of the steel cable reinforcement. Predictions of the magnitude of horizontal force required to cause out-of-plane failure using the proposed procedure and quasi-static analysis procedures are compared with the results of laboratory experiments.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.