Crossover operators are very important components in Evolutionary Computation. Here we are interested in crossovers for the permutation representation that find applications in combinatorial optimization problems such as the permutation flowshop scheduling and the traveling salesman problem. We introduce three families of permutation crossovers based on algebraic properties of the permutation space. In particular, we exploit the group and lattice structures of the space. A total of 34 new crossovers is provided. Algebraic and semantic properties of the operators are discussed, while their performances are investigated by experimentally comparing them with known permutation crossovers on standard benchmarks from four popular permutation problems. Three different experimental scenarios are considered and the results clearly validate our proposals.

An experimental comparison of algebraic crossover operators for permutation problems

Baioletti M.
Membro del Collaboration Group
;
Di Bari G.
Membro del Collaboration Group
;
Milani A.
Membro del Collaboration Group
;
Santucci V.
Membro del Collaboration Group
2020

Abstract

Crossover operators are very important components in Evolutionary Computation. Here we are interested in crossovers for the permutation representation that find applications in combinatorial optimization problems such as the permutation flowshop scheduling and the traveling salesman problem. We introduce three families of permutation crossovers based on algebraic properties of the permutation space. In particular, we exploit the group and lattice structures of the space. A total of 34 new crossovers is provided. Algebraic and semantic properties of the operators are discussed, while their performances are investigated by experimentally comparing them with known permutation crossovers on standard benchmarks from four popular permutation problems. Three different experimental scenarios are considered and the results clearly validate our proposals.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1476952
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact