Damage localization/quantification through vibration-based Structural Health Monitoring (SHM) is commonly performed by inverse calibration of a numerical model. Nevertheless, the numerous simulations required in the associated optimization problem pose a daunting obstacle when applied to real-time SHM. Particularly critical are heritage buildings, whose complex geometries often require computationally intensive modellings. In this light, this paper presents a novel earthquake-induced damage identification approach for historic masonry structures. This relies upon the use of a computationally efficient meta-model suited for real-time system identification. The optimization problem is formulated accounting for discrepancies between numerical and experimental resonant frequencies and mode shapes. Damage localization/quantification is enabled by multivariate analyses of continuously identified model parameters. A real medieval tower is presented as a case study, and several damage scenarios are simulated and used for validation. The reported results pave the way for the development of next-generation long-term vibration-based SHM systems with real-time damage identification capabilities.
Metamodel-based pattern recognition approach for real-time identification of earthquake-induced damage in historic masonry structures
Enrique García-Macías
;Ilaria Venanzi;Filippo Ubertini
2020
Abstract
Damage localization/quantification through vibration-based Structural Health Monitoring (SHM) is commonly performed by inverse calibration of a numerical model. Nevertheless, the numerous simulations required in the associated optimization problem pose a daunting obstacle when applied to real-time SHM. Particularly critical are heritage buildings, whose complex geometries often require computationally intensive modellings. In this light, this paper presents a novel earthquake-induced damage identification approach for historic masonry structures. This relies upon the use of a computationally efficient meta-model suited for real-time system identification. The optimization problem is formulated accounting for discrepancies between numerical and experimental resonant frequencies and mode shapes. Damage localization/quantification is enabled by multivariate analyses of continuously identified model parameters. A real medieval tower is presented as a case study, and several damage scenarios are simulated and used for validation. The reported results pave the way for the development of next-generation long-term vibration-based SHM systems with real-time damage identification capabilities.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.