In the last decades, DNA has been considered far more than the system carrying the essential genetic instructions. Indeed, because of the remarkable properties of the base-pairing specificity and thermoreversibility of the interactions, DNA plays a central role in the design of innovative architectures at the nanoscale. Here, combining complementary DNA strands with a custom-made solution of silver nanoparticles, we realize plasmonic aggregates to exploit the sensitivity of Surface Enhanced Raman Spectroscopy (SERS) for the identification/detection of the distinctive features of DNA hybridization, both in solution and on dried samples. Moreover, SERS allows monitoring the DNA aggregation process by following the temperature variation of a specific spectroscopic marker associated with the Watson-Crick hydrogen bond formation. This temperature-dependent behavior enables us to precisely reconstruct the melting profile of the selected DNA sequences by spectroscopic measurements only.

Exploiting SERS sensitivity to monitor DNA aggregation properties

Ripanti F.;Petrillo C.;
2021

Abstract

In the last decades, DNA has been considered far more than the system carrying the essential genetic instructions. Indeed, because of the remarkable properties of the base-pairing specificity and thermoreversibility of the interactions, DNA plays a central role in the design of innovative architectures at the nanoscale. Here, combining complementary DNA strands with a custom-made solution of silver nanoparticles, we realize plasmonic aggregates to exploit the sensitivity of Surface Enhanced Raman Spectroscopy (SERS) for the identification/detection of the distinctive features of DNA hybridization, both in solution and on dried samples. Moreover, SERS allows monitoring the DNA aggregation process by following the temperature variation of a specific spectroscopic marker associated with the Watson-Crick hydrogen bond formation. This temperature-dependent behavior enables us to precisely reconstruct the melting profile of the selected DNA sequences by spectroscopic measurements only.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1481307
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact