Lower and upper bounds on the size of resolving sets and semi-resolving sets for the point-line incidence graph of the finite projective space PG(n, q) are presented. It is proved that if n > 2 is fixed, then the metric dimension of the graph is asymptotically 2q^n − 1.

On resolving sets in the point-line incidence graph of PG(n; q)

Daniele Bartoli;Stefano Marcugini;Fernanda Pambianco
2020

Abstract

Lower and upper bounds on the size of resolving sets and semi-resolving sets for the point-line incidence graph of the finite projective space PG(n, q) are presented. It is proved that if n > 2 is fixed, then the metric dimension of the graph is asymptotically 2q^n − 1.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1481436
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact