Metal powder bed fusion (PBF) methods need in-process measurement methods to increase user confidence and encourage further adoption in high-value manufacturing sectors. In this paper, a novel measurement method for PBF systems is proposed that uses multi-view fringe projection to acquire high-resolution surface topography information of the powder bed. Measurements were made using a mock-up of a commercial PBF system to assess the system’s accuracy and precision in comparison to conventional single-view fringe projection techniques for the same application. Results show that the multi-view system is more accurate, but less precise, than single-view fringe projection on a point-by-point basis. The multi-view system also achieves a high degree of surface coverage by using alternate views to access areas not measured by a single camera.
Multi-view fringe projection system for surface topography measurement during metal powder bed fusion
Senin N.;
2020
Abstract
Metal powder bed fusion (PBF) methods need in-process measurement methods to increase user confidence and encourage further adoption in high-value manufacturing sectors. In this paper, a novel measurement method for PBF systems is proposed that uses multi-view fringe projection to acquire high-resolution surface topography information of the powder bed. Measurements were made using a mock-up of a commercial PBF system to assess the system’s accuracy and precision in comparison to conventional single-view fringe projection techniques for the same application. Results show that the multi-view system is more accurate, but less precise, than single-view fringe projection on a point-by-point basis. The multi-view system also achieves a high degree of surface coverage by using alternate views to access areas not measured by a single camera.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.