This paper presents an on-machine surface defect detection system using light scattering and deep learning. A supervised deep learning model is used to mine the information related to defects from light scattering patterns. A convolutional neural network is trained on a large dataset of scattering patterns that are predicted by a rigorous forward scattering model. The model is valid for any surface topography with homogeneous materials and has been verified by comparing with experimental data. Once the neural network is trained, it allows for fast, accurate, and robust defect detection. The system capability is validated on microstructured surfaces produced by ultraprecision diamond machining.

On-machine surface defect detection using light scattering and deep learning

Senin N.;
2020

Abstract

This paper presents an on-machine surface defect detection system using light scattering and deep learning. A supervised deep learning model is used to mine the information related to defects from light scattering patterns. A convolutional neural network is trained on a large dataset of scattering patterns that are predicted by a rigorous forward scattering model. The model is valid for any surface topography with homogeneous materials and has been verified by comparing with experimental data. Once the neural network is trained, it allows for fast, accurate, and robust defect detection. The system capability is validated on microstructured surfaces produced by ultraprecision diamond machining.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1481482
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 30
social impact