Fish can be highly vulnerable to environmental pressures because they are exposed to oxidative stressors in the aquatic environment. Such stressors can affect the levels of antioxidant biomarkers against reactive oxygen species (ROS). With this study we investigated the oxidative stress ecology in Danube barbel (Barbus balcanicus) from the Barbucina creek (northeast Italy), a watercourse in 25 the Collio winegrowing district. To do this, superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) activity was measured in gills, liver, and muscle, while metallothioneins (MT) and trace and rare earth elements (REEs) levels were determined in muscle. The effect of environmental factors (physicochemical parameters of water, trace elements and REEs) on oxidative stress biomarkers was thus assessed. High concentrations were determined for cerium (Ce), scandium (Sc), neodymium (Nd), lanthanum (La), yttrium (Y), and praseodymium (Pr) among the REEs. Among the trace elements, arsenic (As), copper (Cu), and mercury (Hg) levels were higher compared to published data, suggesting their role as stressors. The multiple linear regression (MLR) model showed a statistically significant association (R2=0.858; F=10.07; p=0.015) between As, Cu, Hg, and Pr and SOD activity in the gills, indicating a functional relationship between them. Differently, CAT activity was significantly higher in the liver, probably in response to long-term Cu contamination of the watercourse. This was confirmed by the MLR model that showed a significant association (R2=0.638; F=8.152; p=0.02) between the concentration of MT and of Cu. Our data show a biochemical defensive response by Danube barbel to the disturbances in the aquatic ecosystem of the Barbucina creek. These insights advance our understanding of the role and the effects of environmental factors as trace elements and REEs on oxidative stress in fish.

Ecology of oxidative stress in the Danube barbel (Barbus balcanicus) from a winegrowing district: effects of water parameters, trace and rare earth elements on biochemical biomarkers

Gabriele Magara
Membro del Collaboration Group
;
Antonia Concetta Elia
Writing – Review & Editing
2021

Abstract

Fish can be highly vulnerable to environmental pressures because they are exposed to oxidative stressors in the aquatic environment. Such stressors can affect the levels of antioxidant biomarkers against reactive oxygen species (ROS). With this study we investigated the oxidative stress ecology in Danube barbel (Barbus balcanicus) from the Barbucina creek (northeast Italy), a watercourse in 25 the Collio winegrowing district. To do this, superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) activity was measured in gills, liver, and muscle, while metallothioneins (MT) and trace and rare earth elements (REEs) levels were determined in muscle. The effect of environmental factors (physicochemical parameters of water, trace elements and REEs) on oxidative stress biomarkers was thus assessed. High concentrations were determined for cerium (Ce), scandium (Sc), neodymium (Nd), lanthanum (La), yttrium (Y), and praseodymium (Pr) among the REEs. Among the trace elements, arsenic (As), copper (Cu), and mercury (Hg) levels were higher compared to published data, suggesting their role as stressors. The multiple linear regression (MLR) model showed a statistically significant association (R2=0.858; F=10.07; p=0.015) between As, Cu, Hg, and Pr and SOD activity in the gills, indicating a functional relationship between them. Differently, CAT activity was significantly higher in the liver, probably in response to long-term Cu contamination of the watercourse. This was confirmed by the MLR model that showed a significant association (R2=0.638; F=8.152; p=0.02) between the concentration of MT and of Cu. Our data show a biochemical defensive response by Danube barbel to the disturbances in the aquatic ecosystem of the Barbucina creek. These insights advance our understanding of the role and the effects of environmental factors as trace elements and REEs on oxidative stress in fish.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1481703
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact