Objective: Spreading depolarization (SD) is a transient self-propagating wave of neuronal and glial depolarization coupled with large membrane ionic changes and a subsequent depression of neuronal activity. Spreading depolarization in the cortex is implicated in migraine, stroke, and epilepsy. Conversely, spreading depolarization in the striatum, a brain structure deeply involved in motor control and in Parkinson's disease (PD) pathophysiology, has been poorly investigated. Methods: We characterized the participation of glutamatergic and dopaminergic transmission in the induction of striatal spreading depolarization by using a novel approach combining optical imaging, measurements of endogenous DA levels, and pharmacological and molecular analyses. Results: We found that striatal spreading depolarization requires the concomitant activation of D1-like DA and N-methyl-d-aspartate receptors, and it is reduced in experimental PD. Chronic l-dopa treatment, inducing dyskinesia in the parkinsonian condition, increases the occurrence and speed of propagation of striatal spreading depolarization, which has a direct impact on one of the signaling pathways downstream from the activation of D1 receptors. Conclusion: Striatal spreading depolarization might contribute to abnormal basal ganglia activity in the dyskinetic condition and represents a possible therapeutic target. © 2019 International Parkinson and Movement Disorder Society.

Striatal spreading depolarization: Possible implication in levodopa-induced dyskinetic-like behavior

de Iure A.;Quiroga Varela A.;Durante V.;Sciaccaluga M.;Mazzocchetti P.;Megaro A.;Cardinale A.;Costa C.;Ghiglieri V.;Tozzi A.
Investigation
;
Calabresi P.
2019

Abstract

Objective: Spreading depolarization (SD) is a transient self-propagating wave of neuronal and glial depolarization coupled with large membrane ionic changes and a subsequent depression of neuronal activity. Spreading depolarization in the cortex is implicated in migraine, stroke, and epilepsy. Conversely, spreading depolarization in the striatum, a brain structure deeply involved in motor control and in Parkinson's disease (PD) pathophysiology, has been poorly investigated. Methods: We characterized the participation of glutamatergic and dopaminergic transmission in the induction of striatal spreading depolarization by using a novel approach combining optical imaging, measurements of endogenous DA levels, and pharmacological and molecular analyses. Results: We found that striatal spreading depolarization requires the concomitant activation of D1-like DA and N-methyl-d-aspartate receptors, and it is reduced in experimental PD. Chronic l-dopa treatment, inducing dyskinesia in the parkinsonian condition, increases the occurrence and speed of propagation of striatal spreading depolarization, which has a direct impact on one of the signaling pathways downstream from the activation of D1 receptors. Conclusion: Striatal spreading depolarization might contribute to abnormal basal ganglia activity in the dyskinetic condition and represents a possible therapeutic target. © 2019 International Parkinson and Movement Disorder Society.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1488201
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact