Previous studies demonstrated that long-term memory related to object-position in natural scenes guides visuo-spatial attention during subsequent search. Memory-guided attention has been associated with the activation of memory regions (the medial-temporal cortex) and with the fronto-parietal attention network. Notably, these circuits represent external locations with different frames of reference: egocentric (i.e., eyes/head-centered) in the dorsal attention network vs. allocentric (i.e., world/scene-centered) in the medial temporal cortex. Here we used behavioral measures and fMRI to assess the contribution of egocentric and allocentric spatial information during memory-guided attention. At encoding, participants were presented with real-world scenes and asked to search for and memorize the location of a high-contrast target superimposed in half of the scenes. At retrieval, participants viewed again the same scenes, now all including a low-contrast target. In scenes that included the target at encoding, the target was presented at the same scene-location. Critically, scenes were now shown either from the same or different viewpoint compared with encoding. This resulted in a memory-by-view design (target seen/unseen x same/different view), which allowed us teasing apart the role of allocentric vs. egocentric signals during memory-guided attention. Retrieval-related results showed greater search-accuracy for seen than unseen targets, both in the same and different views, indicating that memory contributes to visual search notwithstanding perspective changes. This view-change independent effect was associated with the activation of the left lateral intra-parietal sulcus. Our results demonstrate that this parietal region mediates memory-guided attention by taking into account allocentric/scene-centered information about the objects' position in the external world.

The lateral intraparietal sulcus takes viewpoint changes into account during memory-guided attention in natural scenes

Santangelo V.;
2021

Abstract

Previous studies demonstrated that long-term memory related to object-position in natural scenes guides visuo-spatial attention during subsequent search. Memory-guided attention has been associated with the activation of memory regions (the medial-temporal cortex) and with the fronto-parietal attention network. Notably, these circuits represent external locations with different frames of reference: egocentric (i.e., eyes/head-centered) in the dorsal attention network vs. allocentric (i.e., world/scene-centered) in the medial temporal cortex. Here we used behavioral measures and fMRI to assess the contribution of egocentric and allocentric spatial information during memory-guided attention. At encoding, participants were presented with real-world scenes and asked to search for and memorize the location of a high-contrast target superimposed in half of the scenes. At retrieval, participants viewed again the same scenes, now all including a low-contrast target. In scenes that included the target at encoding, the target was presented at the same scene-location. Critically, scenes were now shown either from the same or different viewpoint compared with encoding. This resulted in a memory-by-view design (target seen/unseen x same/different view), which allowed us teasing apart the role of allocentric vs. egocentric signals during memory-guided attention. Retrieval-related results showed greater search-accuracy for seen than unseen targets, both in the same and different views, indicating that memory contributes to visual search notwithstanding perspective changes. This view-change independent effect was associated with the activation of the left lateral intra-parietal sulcus. Our results demonstrate that this parietal region mediates memory-guided attention by taking into account allocentric/scene-centered information about the objects' position in the external world.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1490236
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact