The present research exploits the strengths of external reflection FT-IR spectroscopy to non-invasively study heritage plastic objects through inspection, for the first time, of the wide spectral range including the near- and mid-IR (12500-350 cm−1). Unlike most of previous works on historical plastic objects, reflection-mode spectra were not corrected for the unfamiliar surface reflection profiles to the more recognizable absorption-like band shapes. This avoided data misinterpretation due to ill-suited Kramers Krönig correction when volume reflection is also present or when highly absorbing IR compounds generate Reststrahlen bands. The inspection of the enlarged spectral range allowed the detection of fundamental, combination and overtone bands which provided reliable identification and semi-quantitative characterization of different polystyrene-based co-polymers. Furthermore the variation of the plastic optical properties across the explored spectral range allowed us to sample the plastic materials to different depths in the mid- and near-IR regions, so as to probe the chemistry at the surface and in the plastic bulk, respectively, in a non-invasive manner. This proved particularly useful to observe spectral markers of surface degradation occurring in historical ABS-based polymers.

Unveiling the composition of historical plastics through non-invasive reflection FT-IR spectroscopy in the extended near- and mid-Infrared spectral range

Romani A.;
2021

Abstract

The present research exploits the strengths of external reflection FT-IR spectroscopy to non-invasively study heritage plastic objects through inspection, for the first time, of the wide spectral range including the near- and mid-IR (12500-350 cm−1). Unlike most of previous works on historical plastic objects, reflection-mode spectra were not corrected for the unfamiliar surface reflection profiles to the more recognizable absorption-like band shapes. This avoided data misinterpretation due to ill-suited Kramers Krönig correction when volume reflection is also present or when highly absorbing IR compounds generate Reststrahlen bands. The inspection of the enlarged spectral range allowed the detection of fundamental, combination and overtone bands which provided reliable identification and semi-quantitative characterization of different polystyrene-based co-polymers. Furthermore the variation of the plastic optical properties across the explored spectral range allowed us to sample the plastic materials to different depths in the mid- and near-IR regions, so as to probe the chemistry at the surface and in the plastic bulk, respectively, in a non-invasive manner. This proved particularly useful to observe spectral markers of surface degradation occurring in historical ABS-based polymers.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1494163
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact