Recent studies have shown that Deep Leaning models are susceptible to adversarial examples, which are data, in general images, intentionally modified to fool a machine learning classifier. In this paper, we present a multi-objective nested evolutionary algorithm to generate universal unrestricted adversarial examples in a black-box scenario. The unrestricted attacks are performed through the application of well-known image filters that are available in several image processing libraries, modern cameras, and mobile applications. The multi-objective optimization takes into account not only the attack success rate but also the detection rate. Experimental results showed that this approach is able to create a sequence of filters capable of generating very effective and undetectable attacks.

Effective Universal Unrestricted Adversarial Attacks Using a MOE Approach

Baia A. E.;Di Bari G.;Poggioni V.
2021

Abstract

Recent studies have shown that Deep Leaning models are susceptible to adversarial examples, which are data, in general images, intentionally modified to fool a machine learning classifier. In this paper, we present a multi-objective nested evolutionary algorithm to generate universal unrestricted adversarial examples in a black-box scenario. The unrestricted attacks are performed through the application of well-known image filters that are available in several image processing libraries, modern cameras, and mobile applications. The multi-objective optimization takes into account not only the attack success rate but also the detection rate. Experimental results showed that this approach is able to create a sequence of filters capable of generating very effective and undetectable attacks.
2021
978-3-030-72698-0
978-3-030-72699-7
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1495764
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 0
social impact