Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS - Res&Arch Institutional Research Information System - Research &Archive
Introduction. The clinical course of Coronavirus Disease 2019 (COVID-19) is highly heterogenous, ranging from asymptomatic to fatal forms. The identification of clinical and laboratory predictors of poor prognosis may assist clinicians in monitoring strategies and therapeutic decisions. Materials and Methods. In this study, we retrospectively assessed the prognostic value of a simple tool, the complete blood count, on a cohort of 664 patients (F 260; 39%, median age 70 (56-81) years) hospitalized for COVID-19 in Northern Italy. We collected demographic data along with complete blood cell count; moreover, the outcome of the hospital in-stay was recorded. Results. At data cut-off, 221/664 patients (33.3%) had died and 453/664 (66.7%) had been discharged. Red cell distribution width (RDW) (χ2 10.4; p < 0:001), neutrophil-to-lymphocyte (NL) ratio (χ2 7.6; p = 0:006), and platelet count (χ2 5.39; p = 0:02), along with age (χ2 87.6; p < 0:001) and gender (χ2 17.3; p < 0:001), accurately predicted in-hospital mortality. Hemoglobin levels were not associated with mortality. We also identified the best cut-off for mortality prediction: a NL ratio > 4:68 was characterized by an odds ratio for in-hospital mortality ðORÞ = 3:40 (2.40-4.82), while the OR for a RDW > 13:7% was 4.09 (2.87-5.83); a platelet count > 166,000/μL was, conversely, protective (OR: 0.45 (0.32-0.63)). Conclusion. Our findings arise the opportunity of stratifying COVID-19 severity according to simple lab parameters, which may drive clinical decisions about monitoring and treatment.
Simple parameters from complete blood count predict in-hospital mortality in covid-19
Introduction. The clinical course of Coronavirus Disease 2019 (COVID-19) is highly heterogenous, ranging from asymptomatic to fatal forms. The identification of clinical and laboratory predictors of poor prognosis may assist clinicians in monitoring strategies and therapeutic decisions. Materials and Methods. In this study, we retrospectively assessed the prognostic value of a simple tool, the complete blood count, on a cohort of 664 patients (F 260; 39%, median age 70 (56-81) years) hospitalized for COVID-19 in Northern Italy. We collected demographic data along with complete blood cell count; moreover, the outcome of the hospital in-stay was recorded. Results. At data cut-off, 221/664 patients (33.3%) had died and 453/664 (66.7%) had been discharged. Red cell distribution width (RDW) (χ2 10.4; p < 0:001), neutrophil-to-lymphocyte (NL) ratio (χ2 7.6; p = 0:006), and platelet count (χ2 5.39; p = 0:02), along with age (χ2 87.6; p < 0:001) and gender (χ2 17.3; p < 0:001), accurately predicted in-hospital mortality. Hemoglobin levels were not associated with mortality. We also identified the best cut-off for mortality prediction: a NL ratio > 4:68 was characterized by an odds ratio for in-hospital mortality ðORÞ = 3:40 (2.40-4.82), while the OR for a RDW > 13:7% was 4.09 (2.87-5.83); a platelet count > 166,000/μL was, conversely, protective (OR: 0.45 (0.32-0.63)). Conclusion. Our findings arise the opportunity of stratifying COVID-19 severity according to simple lab parameters, which may drive clinical decisions about monitoring and treatment.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11391/1498878
Citazioni
15
23
23
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.